

ETR232i 嵌入式网络模块开发评估底板手册

感谢您购买英创信息技术有限公司的产品: ETR232i 嵌入式网络模块。

由于 ETR232H 和 ETR232i 的开发评估底板完全一致,因此本手册也完全适用于 ETR232H。

ETR232i 是一款以 R1610C 为核心、以网络数据通讯为特色的嵌入式 PC 模块,其外形尺寸仅为 74mmx53mm;配有 Flash、串口、以太网接口、GPIO、精简 ISA 总线、实时时钟、LCD 接口、矩阵键盘接口等板载资源;采用 BC3.1 作为开发调试工具;支持RS232/RS485 数据通讯、常规 TCP/IP 应用、GPRS/CDMA 远程数据通讯、NAT 路由、无线网关、FTP 服务器、Web 服务器等多种应用;可用于通讯管理、工业控制、GPRS/CDMA数据终端、仪器仪表等众多领域。

本手册详细列举了 ETR232i 开发评估底板的硬件配置、管脚定义及相关的技术指标供用户使用时备查。

此外,英创公司针对模块的使用编写有《ETR232i 嵌入式网络模块数据手册》;针对应用软件的开发编写有《ETR232i 嵌入式网络模块编程手册》。这三个手册都包含在英创为用户提供的产品开发光盘里面,用户也可以登录英创公司的网站下载阅读。

用户还可以访问英创公司网站或直接与英创公司联系以获得 ETR232i 的其他相关资料。

英创信息技术有限公司联系方式如下:

地址:成都市高新区高朋大道 5号博士创业园 B 座 402# 邮编: 610041

联系电话: 028-86180660 传真: 028-85141028

网址: http://www.emtronix.com 电子邮件: support@emtronix.com.com

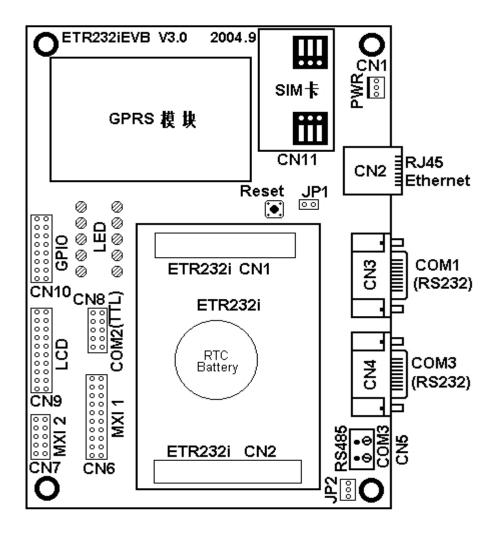
目 录

1、	评估底板硬件接口使用说明	. 3
2、	评估底板接口插座的信号定义	. 5
附	ETR232i 评估底板 V3.X 外形机械尺寸示意图	13

1、评估底板硬件接口使用说明

ETR232i 与评估底板之间是靠 ETR232i 的两个双排插针来进行板间连接的,如封面图 所示。关于这两排插针的信号定义及说明见《ETR232i 嵌入式网络模块数据手册》,本手册详细讲解评估底板的各硬件接口和使用方法。

ETR232i 评估底板作为 ETR232i 的工作板,除了给 ETR232i 供电,并将其提供的硬件接口引出做成标准接口提供给用户以外,还做了 RS485 扩展、实时时钟后备电池, GPRS 无线通讯接口单元,用户若有特殊的扩展应用,可以以评估底板为样本,根据英创公司提供的电路原理图和 PCB 图进行增加或者删减,设计出适合用户应用所需的底板。


评估底板上共有 14 个硬件接插座和 2 个跳线器,以下是底板示意图、各硬件接口在底板上的位置以及详细的使用说明:

接插座编号	接插座类型	主要功能简述	
CN1	3 芯 SIP	5V 直流电源接口	
CN2	RJ45	10M/100M 兼容以太网接口	
CN3	DB9 (阳性)	3 线制 RS232,COM1(RS232 电平、调试端口)	
CN4	DB9 (阳性)	3 线制 RS232,COM3(RS232 电平)	
CN5	2 芯接线端子	RS485 总线接口,COM3 (COM3 为 RS232/485 可选)	
CN6	20芯IDC插针	扩展总线接口 ISA_1	
CN7	10芯IDC插针	扩展总线接口 ISA_2	
CN8	10芯IDC插针	9线 RS232,COM2 口(TTL 电平)	
CN9	20芯IDC插针	LCD 显示接口	
CN10	16芯IDC插针	GPIO 接口(可接矩阵键盘)	
CN11	SIM LOCK	SIM 卡座,GPRS 应用中装 SIM 卡	
CN12	ZIF40pin 插座	与 MC39i 的连接端子(评估板背面)	
ETR232i-CN1	36芯IDC插座	ETR232i 的 CN1 连接口	
ETR232i-CN2	36芯IDC插座	ETR232i 的 CN2 连接口	
JP1	2芯 SIP	选择系统的工作模式(调试或运行)	
JP2	3 芯 SIP	选择 COM3 的工作模式(RS232 或 RS485)	

www.emtronix.com 3 028-86180660

注: 所有的接插座, 方形焊盘均为1脚

这些接插座所在位置如下图所示 (评估底板机械尺寸图见附录 1):

2、评估底板接口插座的信号定义

CN1: +5V 电源输入插座

CN1 管脚编号	信号名称	功能描述
1	VCC	+5V 直流电源输入
2	NC	未使用
3	GND	公共地

用英创提供的电源线,接到 5V 直流开关电源输出,即可通过 CN1 给系统供电

CN2: 以太网接口,标准 RJ45 插座

	CI	N 2	
信号名称及简要描述	PIN	PIN	信号名称及简要描述
	#	#	
TPTX+	1	2	TPTX-
TPRX+	3	4	
	5	6	TPRX-
	7	8	

插座上自带以太网指示灯,左边为绿色,LINK 指示灯,右边为黄色,100M 指示灯

CN3: COM1 的 RS232 接口(调试端口), RS232 电平, DB9 接口

	CN3		
信号名称及简要描述	PIN	PIN	信号名称及简要描述
	#	#	
	1	6	
RXD,串行输入	2	7	
TXD,串行输出	3	8	
	4	9	
GND, 公共地	5		

跳线器 JP1 用于选择 ETR232i 的启动运行模式:

JP1 短接:调试模式	JP1 断开:	正常运行模式
-------------	---------	--------

在开发期间,ETR232i一般处于调试模式工作,用英创公司提供的串口调试线将 COM1

和 PC 机的串口连接起来,并将 JP1 的跳线器短接,上电后 LCD 即显示 "waiting for handshake (press Ctrl-Break to quit)"的提示命令,在 DOS 命令行下键入 TDRF D 后回车即可在 PC 机的屏幕上看见存在 FLASH 中的文件及文件夹。

当用户的应用程序开发完毕后,就可把 JP1 断开让系统进入自动运行模式。注意: 之前需要编写并下载文件 user.bat。有关内容在相关技术文档中有详细的介绍,这里不再赘述。

CN4: COM3,标准的三线 RS232, RS232 电平,DB9 接口,可与计算机超级终端, 串口调试助手等工具程序连接进行测试,英创公司提供有测试程序

	CN4		
信号名称及简要描述	PIN	PIN	信号名称及简要描述
	#	#	
	1	6	
RXD,串行输入	2	7	
TXD,串行输出	3	8	
	4	9	
GND,公共地	5		

CN5: COM3 的 RS485 插座,从板子背面看,方形焊盘为 1 脚

CN5 管脚编号	信号名称	功能描述
1	DATA+	差分信号+
2	DATA-	差分信号-

跳线器 JP2 用于选择 COM3 的工作模式:

JP2 1-2 短接: RS232	JP2 2-3 短接: RS485	
-------------------	-------------------	--

- 注 1: 评估底板上提供的 RS485 是不带光电隔离的,如果客户需要光电隔离的 RS485,可将评估底板背面 R45、R46、R47、R48 断开,并且将 U7, U8, U9 和 R19、R20、R21、R22 自行焊上即可使用。
- 注 2: 评估底板的 RS485 考虑了两种模式,一是 RTS 硬件判断 RS485 的收发方向,使用 RS485 的驱动程序,这种方法的优点是驱动能力强,抗干扰能力强,但是需要在中断程序里延时;二是用 TX 结合软件判断 RS485 的收发方向,使用 RS232 的程序,优点是速度快,不需要软件延时,缺点是驱动能力和抗干扰能力稍弱,不适合带负载多,布线长的现场应用。用户可根据

www.emtronix.com 6 028-86180660

现场实际情况选择所使用的 RS485 驱动模式。ETR232I 评估底板默认模式 为 TX 驱动模式。如有疑问,请来电咨询。

CN6: 精简 ISA 总线扩展接口,可方便地与英创公司提供的 CF 卡适配座、串口扩展模块等系列扩展模块相接,用软带线一对一连接即可,方便地实现大容量、易携带的存储方案及其他扩展方案等。用户还可以自己设计扩展模块,与扩展总线连接,可以以较低的成本实现整套系统的评估和开发工作,评估完成后可将各模块整合起来,形成完整的方案。该接口采用 20 芯 IDC 插针,交错排列,#表示低有效,下同。

	CI	1 6	
信号名称及简要描述	PIN	PIN	信号名称及简要描述
	#	#	
RESET#,复位输出,低有效	1	2	A0,地址总线
SD0,数据总线,LSB	3	4	A1,地址总线
SD1,数据总线	5	6	A2,地址总线
SD2,数据总线	7	8	A3, 地址总线
SD3,数据总线	9	10	A4, 地址总线
SD4,数据总线	11	12	WE#,写信号控制线
SD5,数据总线	13	14	RD#,读信号控制线
SD6,数据总线	15	16	CS1#,I/O 片选线
SD7,数据总线,MSB	17	18	VCC,电源输出
IRQ5,中断请求	19	20	GND, 公共地

CS1: 默认地址段为 300h-37Fh

CS0: 默认地址段为 200h-27Fh, 还可以通过软件设置成存储器方式

关于 CS1 及下文中 CS0 的使用,详见《ETR232i 网络模块数据手册》

CN7: 扩展总线接口 2, 高位地址线。从 ETR232I 模块来看,高位地址线来自于 32pin 插座向下引出的长针,由于大多数用户不需要使用存储器扩展或者不需要用到高位地址线,英创公司提供给用户的标准 ETR232I 是不具备高位地址线的,用户若有此应用需求,需要向英创公司特殊说明。CN7 与 CN6 配合使用,实现存储器方式扩展。采用 10 芯 IDC 插针,交错排列

信号名称及简要描述	CI	N 7	信号名称及简要描述
信与石柳及间安畑处	PIN#	PIN#	1 1 5 石
A5,地址总线	1	2	A6,地址总线
A7,地址总线	3	4	A8,地址总线

A9,地址总线	5	6	A10,地址总线
A11,地址总线	7	8	A12,地址总线
CS0#, 可编程片选线	9	10	GND,公共地

CN8: COM2 的 RS232 接口, TTL/CMOS 电平, 采用 10 芯 IDC 插针, 交错排列

信号名称及简要描述	CN8		信号名称及简要描述
信与石柳及间安畑处	PIN#	PIN#	1 1 5 石
DCD2#	1	2	DSR2#
RXD2,串行输入	3	4	RTS2#
TXD2,串行输出	5	6	CTS2#
DTR2#	7	8	RI2#
GND,公共地	9	10	VCC,电源输出

CN9: LCD 接口,采用 20 芯 IDC 插针,交错排列

	CI	1 9	
信号名称及简要描述	PIN	PIN	信号名称及简要描述
	#	#	
GND, 公共地	1	2	VCC,电源输出
Vadj,字符 LCD 对比度控制	3	4	A0,地址总线,选择寄存器
LCD_WE#,写信号,低有效	5	6	LCD_E 或 LCD_RD# (注)
SD0,数据总线,LSB	7	8	SD1,数据总线
SD2,数据总线	9	10	SD3,数据总线
SD4,数据总线	11	12	SD5,数据总线
SD6,数据总线	13	14	SD7,数据总线,MSB
A1,地址总线、可编程信号线	15	16	A2, 地址总线、可编程信号线
LCD_CE#, LCD 片选, 低有效	17	18	A3, 地址总线、可编程信号线
RESET#,复位输出,低有效	19	20	A4/背光控制(注)

- 注 1: 对字符 LCD、基于 KS0108 (或 HD61202) 控制器的点阵 LCD, 6 脚为 LCD_E 总线使能信号,高电平有效; 对基于 T6963 和 SED1335 控制器的点阵 LCD, 6 脚为 LCD_RD#读信号,低电平有效。
- 注 2: PIN20 为可选择信号线,用户可以选择用作地址总线 A4,此时通常用于和 ETA906 配合使用,连接 TFT 类的 LCD;用户还可以选择做为大多数单色 LCD 的背光控制,背光电压+3.6V~+4.3V。用户可以通过控制 GPIO6 来控制背光的 打开和关闭,关于 GPIO6 的操作,详见《ETR232I 嵌入式网络模块编程手册》

以下是 CN9 与常见各型 LCD 信号连线表,表中所列的 LCD 均以北京精电蓬远的 LCD 作为例子,用户若购买其它公司的 LCD,可能出现 LCD 信号编排顺序的不同,请对厂家提

www.emtronix.com 8 028-86180660

供的技术手册进行详细阅读理解后再对应:

表 1: CN9 与 4x20 字符 LCD (1#) 连接表

	CN9	1#LCD	
信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GND,公共地	1	1	GND, 公共地
VCC,电源输出	2	2	VCC,电源输出
Vadj,字符 LCD 对比度控制	3	3	Vadj,字符 LCD 对比度控制
AO,地址总线	4	4	A0, 地址总线, 选择寄存器
LCD_WE#	5	5	R/W,读写选择
LCD_RD#	6	6	E,读写使能,高有效
SD0,数据总线,LSB	7	7	SD0,数据总线,LSB
SD1,数据总线	8	8	SD1,数据总线
SD2,数据总线	9	9	SD2,数据总线
SD3,数据总线	10	10	SD3,数据总线
SD4,数据总线	11	11	SD4,数据总线
SD5,数据总线	12	12	SD5,数据总线
SD6,数据总线	13	13	SD6,数据总线
SD7,数据总线,MSB	14	14	SD7,数据总线,MSB

表 2: CN9 与 SED1335 控制器 320×240 点阵 LCD (2#) 连接表

信号名称及简要描述	CN9 PIN#	2#LCD PIN#	信号名称及简要描述
GND, 公共地	1	1, 2	GND, 公共地
VCC,电源输出	2	3	VCC,电源输出
AO,地址总线	4	9	AO,选择寄存器
LCD_WE#	5	6	WR#,写信号,低有效
LCD_RD#	6	7	RD#,读信号,低有效
SD0,数据总线,LSB	7	12	SD0,数据总线,LSB
SD1,数据总线	8	13	SD1,数据总线
SD2,数据总线	9	14	SD2,数据总线
SD3,数据总线	10	15	SD3,数据总线
SD4,数据总线	11	16	SD4,数据总线
SD5,数据总线	12	17	SD5,数据总线
SD6,数据总线	13	18	SD6,数据总线
SD7,数据总线,MSB	14	19	SD7,数据总线,MSB
LCD_CE#	17	8	CE#,片选,低有效

表 3: CN9 与 HD61202 (KS0108) 控制器 128×64 点阵 LCD (3#) 连接表

信号名称及简要描述	CN9 PIN#	3#LCD PIN#	信号名称及简要描述
GND, 公共地	1	3	GND,公共地
VCC, 电源输出	2	4	VCC, 电源输出
A0,地址总线	4	6	D/I,选择寄存器
LCD_WE#	5	7	R/W,读写选择
LCD_RD#	6	8	E,读写使能,高有效
SD0,数据总线,LSB	7	9	SD0,数据总线,LSB
SD1,数据总线	8	10	SD1,数据总线
SD2,数据总线	9	11	SD2,数据总线
SD3,数据总线	10	12	SD3,数据总线
SD4,数据总线	11	13	SD4,数据总线
SD5,数据总线	12	14	SD5,数据总线
SD6,数据总线	13	15	SD6,数据总线
SD7,数据总线,MSB	14	16	SD7,数据总线,MSB
A1,地址总线	15	2	CSB#,片选 B (注)
A3, 地址总线	18	1	CSA#,片选 A

注: 若用户接上 LCD 后出现左右屏幕显示内容相反的情况,将 CSA#与 CSB# 交换

表 4: CN9 与 T6963C 控制器 128×64(240×128) 点阵 LCD(4#) 连接表

信号名称及简要描述	CN9 PIN#	4#LCD PIN#	信号名称及简要描述
GND,公共地	1	2	GND,公共地
VCC, 电源输出	2	3	VCC,电源输出
A0,地址总线	4	8	C/D,选择寄存器
LCD_WE#	5	5	WR#,写信号,低有效
LCD_RD#	6	6	RD#,读信号,低有效
SD0,数据总线,LSB	7	11	SD0,数据总线,LSB
SD1,数据总线	8	12	SD1,数据总线
SD2,数据总线	9	13	SD2,数据总线
SD3,数据总线	10	14	SD3,数据总线
SD4,数据总线	11	15	SD4,数据总线
SD5,数据总线	12	16	SD5,数据总线
SD6,数据总线	13	17	SD6,数据总线
SD7,数据总线,MSB	14	18	SD7,数据总线,MSB

LCD_CE#	17	7	CE#,片选,低有效
RESET#	19	9	RST#,复位输入,低有效

注: 4#LCD 的 1 脚 FG 和 18 脚 FS 接地或者接 5V, 具体请参考 LCD 的技术手册

表 5: CN9 与 SED1520 控制器 122×32 点阵 LCD (5#) 连接表

信号名称及简要描述	CN9 PIN#	5#LCD PIN#	信号名称及简要描述
GND,公共地	1	2	GND,公共地
VCC,电源输出	2	1	VCC,电源输出
AO,地址总线	4	8	A0,选择寄存器
LCD_WE#	5	7	W/R#,写信号,低有效
LCD_RD#	6	5	E2,读写使能信号 2,高有
			效
SD0,数据总线,LSB	7	9	SD0,数据总线,LSB
SD1,数据总线	8	10	SD1,数据总线
SD2,数据总线	9	11	SD2,数据总线
SD3,数据总线	10	12	SD3,数据总线
SD4,数据总线	11	13	SD4,数据总线
SD5,数据总线	12	14	SD5,数据总线
SD6,数据总线	13	15	SD6,数据总线
SD7,数据总线,MSB	14	16	SD7,数据总线,MSB
LCD_CE#	17	6	E1,读写使能信号 1,高有
			效
RESET#	19	4	RST#,复位输入,低有效

由于篇幅所限,未能列出的其他型号 LCD,请用户电话或者 EMAIL 咨询。

CN10: 矩阵键盘及 GPIO 接口。用 16 芯 IDC 插针,交错排列。其中 KOUTO-KOUT4 只能用作键盘扫描输出,KINO-KIN3 可以用作键码值输入,也可以用作独立的 GPIO。KOUTO-4,KINO-3一起可以构成 4x5 矩阵键盘。由于 KOUTO-4 为 GPIO0,2,4 的译码输出,若用户使用键盘,则 GPIO0,2,4 不能再用作 IO。例如,若用户使用 4x5 键盘,则再无 IO 可用,若用户使用 2x5 键盘,则可以选择 KOUTO-4 和 GPIO1,3 一起构成,还剩下 GPIO5,7 可单独用作 IO。GPIO6 用作了 LCD 的背光控制,因此未引出,可以参见本手册的 LCD 接口(CN9)相 关章节。关于 GPIO 的软件编程,详见《ETR232i 嵌入式网络模块编程手册》。

信号名称及简要描述	CN10		信号名称及简要描述
百万石你及问安加处	PIN#	PIN#	旧与石物及间安油处

KOUTO (键盘输出)	1	2	KIN0,GPIO1(双向)
KOUT1(键盘输出)	3	4	KIN1,GPIO3(双向)
KOUT2(键盘输出)	5	6	KIN2,GPIO5(双向)
KOUT3(键盘输出)	7	8	KIN3,GPIO7(双向)
KOUT4(键盘输出)	9	10	VCC,5V 电源输出
GPIO0 (双向)	11	12	IRQ6,中断输入
GPIO2(双向)	13	14	RSTIN#,复位按键
GPIO4 (双向)	15	16	GND,公共地

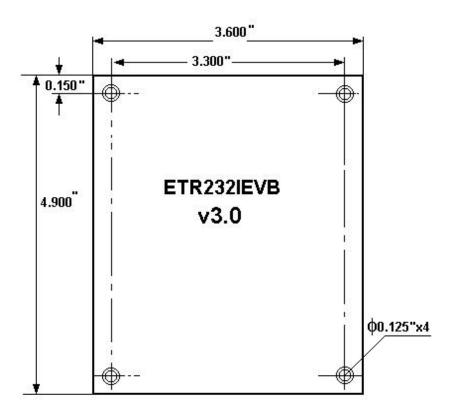
CN11: SIM 卡座,在 GPRS 应用时,如果采用 SIEMENS 的 MC35i 模块时使用 SIM 卡座,同时使用板子背面的 ZIF40 插座与 MC39i 模块连接

CN12: ZIF40 插座,位于评估板的背面,用于与 GPRS 模块 MC39i 连接,采用 40PIN 间距为 0.5mm 扁平电缆连接

LED 指示灯说明:

SYNC: GPRS 连接及数据传输指示灯,其闪烁及发光状况根据不同的模块有不同

PWR: GPRS 模块上电指示灯,灯亮则表明 GPRS 模块已经上电并正常工作


TXD3: COM3 用做 RS485 时,发送数据则该指示灯亮

RXD3: COM3 用做 RS485 时,接收数据则该指示灯亮

IO0-IO4: GPIO0-GPIO4 指示灯,做输出时,输出 0 则灯亮,输出 1 则灯灭;做输入时,外部输入 0 则灯亮,输入 1 则灯灭,所以灯亮与否取决于该位 GPIO 引脚上的物理电平,为 0 则亮,为 1 则灭。

开发光盘中提供有 ETR232i 评估底板的电路原理图(PDF 文件)和 PCB 图(Protel 文件),客户可作为开发的参考,进行增加或删减以满足自己产品的实际需要。

附 ETR232i 评估底板 V3.X 外形机械尺寸示意图

标注尺寸: inch (1 inch = 2.54cm = 1000mil)