
EM335x 开发评估底板手册

感谢您购买英创信息技术有限公司的产品: EM335x / EM3352 / EM3352-L 工控主板。

EM335x、EM3352和 EM3352-L 是管脚完全相同,处理能力和功能接口有所差异的三款工控主板产品。在本手册中,除非特别说明,名称 EM335x 同时指 EM335x 主板、EM3352 主板和 EM3352-L 主板。

EM335x 是一款面向工业领域的高性价比嵌入式主板,以 TI 的 AM3354 为其硬件核心, EM335x 通过预装完整的操作系统及接口驱动,为用户构造了可直接使用的通用嵌入式核心平台。目前 EM335x 可选择预装 Linux-3.12 或 WEC7 两种系统平台,用户应用程序开发方面,对 WEC7 平台可直接使用 Microsoft 提供的著名软件开发工具 Visual Studio 2008 进行应用开发;对 Linux 平台可采用英创公司提供的 Eclipse 集成开发环境(Windows 版本),其编译生成的程序可直接运行与 EM335x。英创公司针对 EM335x 提供了完整的接口低层驱动以及丰富的应用程序范例,用户可在此基础上方便、快速地开发出各种工控产品。

在硬件方面,包括 EM335x 在内的所有英创嵌入式主板产品,均采用背插形式,通过 主板的双排坚固插针与客户的应用底板连接在一起,从而构成完整的智能设备,其连接方式 如下图所示。

客户应用底板的基本功能包括向 EM335x 供电、引出所需的各个通讯接口、扩展专用的应用电路单元等等。应用底板的尺寸以及接口所处位置则与整机产品的接口密切相关。另外整机的电磁兼容性也会在应用底板上有相应体现。

<u>www.emtronix.com</u> 2 028-86180660

当客户第一次购买 EM335x 产品时,由于还没有自己的应用底板,自然就需要一个能对 EM335x 的各项功能进行快速评估的底板,而 EM335x 开发评估开发底板就是专门供客户在其产品初期,进行功能评估测试以及应用程序的开发。本手册主要介绍 EM335x 评估底板的使用,包括各个接口的信号定义,扩展的驱动电路说明等内容。

EM335x 开发评估底板将包括在开发套件中出售,套件中的资料还包括了评估底板的电路原理图(PDF格式)和 PCB 文件(Protel格式)。用户可在这些资料的基础上,根据自己的需求进行删减和增加,快速完成自己的应用底板的设计。此外,英创公司针对模块的使用编写有《EM335x 工控主板数据手册》。这两个手册都包含在英创为用户提供的产品开发光盘里面,用户也可以登录英创公司的网站下载相关资料的最新版本。

用户还可以访问英创网站或直接与英创公司联系以获得 EM335x 的其他相关资料。

英创信息技术有限公司联系方式如下:

地址:成都市高新区高朋大道 5 号博士创业园 B 座 407# 邮编: 610041

联系电话: 028-86180660 传真: 028-85141028

网址: www.emtronix.com 电子邮件: support@emtronix.com

注意:英创会不断的完善本手册的相关技术内容,请客户适时从公司网站下载最新版本的数据手册, 恕不另行通知。

<u>www.emtronix.com</u> 3 028-86180660

目 录

目	录		4
1、	评估	底板概述	6
	1.1	EM335x 评估底板主要接口插座	7
	1.2	EM335x 评估底板内部插座及其他	8
	1.3	机械尺寸及插座位置示意图	9
2、	评估	底板接口插座的信号定义	.10
	2.1	以太网接口	.10
	2.2	RS232C 电平的异步串口	.10
	2.3	LVCMOS 电平异步串行接口	. 11
	2.4	RS485 接口	.12
	2.5	CAN 接口	.13
	2.6	USB 主控接口	.14
	2.7	USB OTG 接口	.14
	2.8	通用 IO 接口	15
	2.9	ISA 总线接口	.15
	2.10	AD 输入端口	.16
	2.11	内置 WiFi 模块	.16
	2.12	音频接口	.17
	2.13	电容触摸屏接口	.17
	2.14	SPI 和 I2C 接口	.18
	2.15	电源插座	.19
3,	EM3	335X 与评估底板的连接插座	.20
4、	评估	底板内部插座及其它	.23
	4.1	运行模式选择跳线器	23
	4.2	指示灯	23
	4.3	复位按键	.23
	4.3	RTC 后备电池	.24
5、	其它	说明	25

版本历史.......26

1、评估底板概述

与英创公司大多数嵌入式主板产品一样,外形结构上 EM335x 是作为一片"大芯片",通过模块的 2 个 36 芯双排 IDC 插针,插在客户的应用底板上进行工作的。当客户第一次购买 EM335x 嵌入式主板时,由于还没有开发自己的应用底板,就需要一块与 EM335x 相配合的底板,以便于对 EM335x 的各项功能进行评估以及开发相关的应用程序, EM335x 开发评估底板就是为这一目的而设计的。

EM335x 与评估底板之间是靠 EM335x 的两个双排 IDC36 插针连接的。开发评估底板除了承载 EM335x 并为其供电以外,还将其所有硬件接口引出并转换成标准接口形式提供给用户。此外 EM335x 评估底板上还扩展了 2 路 RS485 驱动单元、2 路 CAN 接口驱动单元,EM335x 实时时钟的后备电池等电路。在 EM335x 评估套件配套的光盘资料中,包括了评估底板的电路原理图(PDF 格式)和 PCB 图(Protel 格式),用户可以直接对这些资料进行增加或者删减,设计出适合自己的应用底板。

为了尽可能提高 EM335x 开发评估底板的使用性,标准 EM335x 板上有一个 USB 虚拟串口(1)和 7 个物理串口。7 个物理串口中,6 个串口是用户可使用的串口,一个是系统调试口。各串口编号及接口规范如下表所示:

CE 串口	Linux	RS232	RS485	LVCMOS	简要说明
COM1	-	-	-	-	USB 虚拟串口,支持 ActiveSync
COM2	ttyS1	-	-	$\sqrt{}$	支持 GPRS/CDMA 数据通讯
СОМЗ	ttyS2	$\sqrt{}$	-	-	RS232 电平,LVCMOS 电平可选
COM4	ttyS3	-	-	$\sqrt{}$	
COM5	ttyS4	-	-	√	
COM6	ttyS5	-	-	$\sqrt{}$	与 GPIO2 – GPIO3 复用管脚
COM7	ttyS6	-	√	-	与 GPIO4 – GPIO5 复用管脚
DBGCOM	console	V	-	-	调试串口,系统占用

USB 虚拟串口(1):使用 EM335x 的 USB-OTG 接口虚拟一个串口,以实现 EM335x 通过 USB-OTB 接口与 PC 机 USB-HOST 口连接后,进行高速数据通讯。

1.1 EM335x 评估底板主要接口插座

为了方便用户对 EM335x 的各个功能进行快速评估,按不同功能在 EM335x 评估底板上共设置了 18 个接口插座,如下表所示:

插座编号	接插座类型	主要功能简述
CN1	6 芯 HT508 插座	CAN 接口, COM4, COM7 的 RS485 接口, RS485 自动或硬件方向控制
CN2	RJ45 网口插座	EM335x 10M/100M ⊠ □ 1
CN3	RJ45 网口插座	EM335x 10M/100M ⊠ □ 2
CN4	双层 USB A 型插座	2路 USB 主控接口
CN5	USB mini-AB 型插座	USB OTG 接口
CN6	双层 DB9 公头插座	上层为系统调试串口(COM_DBG),3 线 RS232C 电平下层为 COM3 接口,3 线 RS232C 电平
CN7	3 芯电源插座	电源接口(DC 5V)
CN8	IDC20	通用数字 IO 接口,GPIO16~GPIO31
CN9	IDC20	ISA 总线接口
CN10	IDC20	通用数字 IO 接口,GPIO0~GPIO15
CN11	IDC10	COM2 口,5 线 LVCMOS 电平串口
CN12	IDC16	音频接口(I2S,SPI)
CN13	IDC10	COM6 口,3 线 TTL 电平串口
CN14	IDC10	COM5 口, 3 线 LVCMOS 电平串口
CN15	IDC10	SPI 和 I2C 接口
CN17	5.5mm DC 插座	电源接口(DC 5V)
CN18	40Pin ZIF 插座	电容触摸屏接口
J1	IDC8	模拟量测试接口

注意:

- 1. 评估底板上所有接插座的方形焊盘均为 1#管脚。
- 2. IDC 插座均为 2.54mm 间距带外套插座。
- 3. 在 EM3352-L 的评估底板中, CAN 驱动电路没有焊装, 但其插座可能保留。

1.2 EM335x 评估底板内部插座及其他

EM335x 评估底板内部还包括了承载 EM335x 主板模块的两个 36 芯双排 IDC 插座、9个跳线器以及 1个硬件复位按钮,描述如下:

接插座编号	接插座类型	主要功能简述
EM335x_CN1	36 芯 IDC 插座	连接 EM335x 的 CN1
EM335x_CN2	36 芯 IDC 插座	连接 EM335x 的 CN2
EM335x_CN3	40 芯 ZIF 插座	连接 EM335x 的 CN3 LCD 接口
JP1	2 芯 SIP	工作模式选择(调试/运行)
JP2、JP3	2芯 SIP	分别为 COM4、COM7 硬件 RTS 使能跳线器
JP4、JP5	2 芯 SIP	CAN 接口 RX,TX 信号线
JP6、JP7	2芯 SIP	分别为 COM4、COM7 RS485 120 欧终端匹配电阻选择
JP8、JP9	2芯 SIP	CAN 接口 120 欧终端匹配电阻选择(仅对 EM335x)
S1	复位按钮	系统复位

1.3 机械尺寸及插座位置示意图

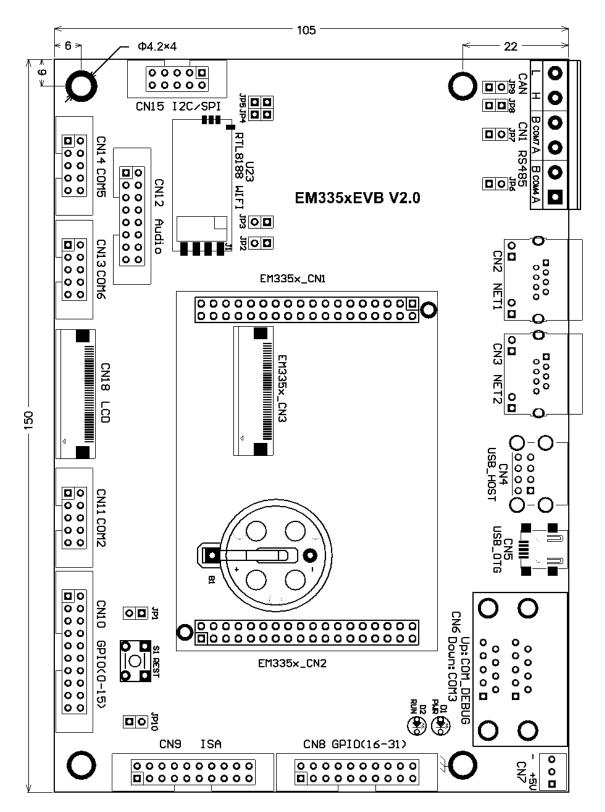


图 1: EM335xEVB 布局图 (单位: mm)

2、评估底板接口插座的信号定义

EM335x的评估底板上的所有插座,如无特殊说明,1#管脚为方形焊盘,而其他管脚为圆形焊盘,借助评估底板焊接面的丝网方框标志,可很容易识别 1#管脚位置。所有信号名称,若带#后缀,表示该信号为低电平有效的信号。评估底板上的大多数引脚,均是从 EM335x 主板直接引出,相应的电气特性、时序特性等请参考《EM335x 工控主板数据手册》。

2.1 以太网接口

评估底板上的 CN2、CN3 分别是 EM335x 的以太网接口 1 和网口 2,采用标准 RJ45 插座。为了满足电磁兼容性设计的要求,网络接口的隔离变压器尽量靠近 RJ45 插座, EM335x 主板上不带网络隔离变压器。以太网接口除作通常的网络相关应用外,还可用于 EM335x 的调试、维护。这两个功能可同时运行,互不影响。各管脚信号定义如下:

PIN#	信号名称	信号简要描述			
1	TPTX+	隔离差分输出+			
2	TPTX-	隔离差分输出-			
3	TPRX+	隔离差分输入+			
4		通过 750bmc 中阳控列 P I/15 外壳地			
5		通过 75Ohms 电阻接到 RJ45 外壳地			
6	TPRX-	隔离差分输入-			
7		通过 750hms 电阻接到 RJ45 外壳地			

网口 RJ45 插座上自带以太网指示灯, 其中绿灯为 LINK 灯: 黄灯为 100M 灯。

2.2 RS232C 电平的异步串口

EM335x 评估底板的 CN6 是标准双层 DB9 公头插座。上层为 EM335x 系统调试串口,下层是 EM335x 的 COM3 口,都为 RS232C 电平。

<u>www.emtronix.com</u> 10 028-86180660

COM3 口的信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	6	
COM3_RX,串行输入	2	7	
COM3_TX,串行输出	3	8	
	4	9	
GND,公共地	5		

COM_DBG 插座的信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	6	
COMDBG_RX,串行输入	2	7	
COMDBG_TX,串行输出	3	8	
	4	9	
GND, 公共地	5		

系统调试串口 COM_DBG,在大多数的应用程序开发中,客户都不需要关心它的使用。在一些特殊情况下,客户可能需要了解 EM335x 的启动过程,或通过调试串口打印调试信息,这时就需要使用调试串口,具体的使用方法是与 PC 的串口相连,通过超级终端(115200 8-N-1) 就可接收到 EM335x 的启动信息或应用程序打印的调试信息。

2.3 LVCMOS 电平异步串行接口

EM335x 评估底板的 CN11 是 5 线制 LVCMOS 电平串口 COM2, 管脚的具体定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD2,串行输入	3	4	RTS2#,复用 GPIO1
TXD2,串行输出	5	6	CTS2#,复用 GPIO0
	7	8	
GND, 公共地	9	10	VCC,+5V 电源

CN11 上的 COM2, 所有信号均为 3.3V 的 LVCMOS 电平。在实际应用中, COM2 通常用于连接 GPRS/CDMA/3G 等无线通讯模块。对大多数应用,采用 3 线制 (RXD/TXD/GND)即可满足要求,一些特别的应用可能需要硬件流控支持,这时可加入

RTS2#和 CTS2#这组握手信号。这时对应的 GPIO 功能不能再使用。

CN13、CN14为3.3V LVCMOS 电平串口 COM6和 COM5,为3线制串口。

CN13 COM6 口信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD6,串行输入,复用 GPIO2	3	4	
TXD6,串行输出,复用 GPIO3	5	6	
	7	8	
GND, 公共地	9	10	VCC,+5V 电源输出

CN14 COM5 信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD5,串行输入	3	4	
TXD5,串行输出	5	6	
	7	8	
GND, 公共地	9	10	VCC,+5V 电源输出

2.4 RS485接口

在 EM335x 评估底板上扩展了 2 路 RS485 驱动电路单元,COM4 和 COM7,它们在 6 芯 HT508 插座 CN1 上引出, 驱动电路单元光电隔离。CN1 信号定义如下:

PIN#	信号名称	信号简要描述
1	Α	COM4 口 RS485 差分信号+
2	В	COM4 口 RS485 差分信号-
3	Α	COM7 口 RS485 差分信号+
4	В	COM7 口 RS485 差分信号-
5		
6		

为了简化应用程序设计, RS485 驱动电路采用独特的 TXD 加延时的自动方向控制, 可直接利用串口驱动程序实现 RS485 的通讯, 应用程序不需要关心 RS485 接口芯片的方向

控制问题。

在现场电磁环境复杂、RS485 总线节点较多的情况下应该使用 RS485 硬件方向控制。 短接 EM335x 评估底板上的 JP2 和 JP3 将分别使能 COM4 和 COM7 口 RS485 的硬件方向 控制功能,同时应用程序需要做相应的设置。

JP6 和 JP7 分别是 COM4 和 COM7 口 RS485 总线终端配置电阻,短接后为将为总线并上 120 欧电阻。

2.5 CAN 接口

EM335x/EM3352 支持两路 CAN 总线接口, CAN1 在评估底板的 CN1 上引出,驱动电路单元使用磁耦隔离, CAN1 接口在 CN1 上的定义如下: (CAN1 接口驱动仅在 EM335x 和 EM3352 评估底板上才部署)

PIN#	信号名称	信号简要描述
1		
2		
3		
4		
5	Н	CAN1 差分信号+
6	L	CAN1 差分信号-

EM335x 的 CAN1 通讯接口是与 GPIO10, GPIO11 复用的, CAN 通讯功能并不是每个客户都会使用到, 所以在 EM335x 的评估底板上放置了两个跳线器 JP4、JP5, 当用户使用 CAN 功能时,需要短接这两个跳线器,相应的 GPIO 功能不能再使用。

JP8、JP9 是 CAN1 总线终端配置电阻,这两个跳线器同时短上后,将为 CAN1 总线并上 120Ω 电阻 $(60\Omega \times 2)$,如果不需要总线匹配,两个路线器需要同时断开。

EM335x/EM3352 的 CAN2 与 GPIO26、GPIO27 复合,如果用户需要评估 CAN2,可选购英创专用的 CAN 总线接口驱动模块 ETA702,直接插在 EM335x 评估底板的 CN15 上评估第二路 CAN 接口。

2.6 USB 主控接口

CN4 是两路 USB 主控接口,可支持 U 盘的文件操作,USB 鼠标、USB 键盘等。在调试状态下,用户通过 U 盘来加载最基本的调试运行配置文件 userinfo.txt。

CN4 是标准双层 USB A 型插座,插座上下两个 USB 口的管脚定义一样,如下表:

PIN#	信号名称	信号简要描述
1	+5V	USB 供电输出,最大电流 500mA
2	USB_HD-	USB 的差分信号-
3	USB_HD+	USB 的差分信号+
4	GND	电源地,即公共地。

如果使用的是 EM3352-L 工控主板,则仅 CN4 的下层 USB 接口有效。

2.7 USB OTG 接口

CN5 为 USB OTG 接口,支持微软的 ActiveSync 通讯模式,用户可利用该模式,通过 点对点的 USB 连接,就可在客户的开发主机上方便的维护 EM335x 的文件内容。同时 USB OTG 接口也作为 EM335x 的应用程序调试接口。

CN5 采用的是标准 USB OTG miniAB 型插座,插座上的信号定义如下:

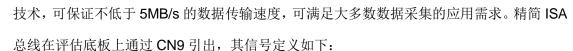
PIN#	信号名称	信号简要描述		
1	USB 电源端	作为主控口时,用于向外部设备供电,最大电流 500mA		
2	USB_DD-	USB 的差分信号-		
3	USB_DD+	USB 的差分信号+		
4	USB_ID	USB 连接类型检测。		
5	GND	公共地。		

EM335x 评估底板的 USB OTG 接口与具有 OTG 功能的其他 USB 端口连接时(如 PC 机的 USB 端口),对连接带线没有特别的要求,因为这时 USB OTG 会通过软件协议来确认 EM335x 是作为 Host 端或 Device 端。但当连接无 OTG 功能的 USB 端口时,则对连接线插头有特别的要求,例如若需要连接 U 盘到 CN3,则连接线的插头需要是 miniB 型的,它会将 USB ID 接地,从而通知 EM335x 该 USB OTG 接口作为 Host 端口工作。

2.8 通用 IO 接口

EM335x 支持 32 位可独立操作的 GPIO。在 EM335x 的评估底板上, 32 位 GPIO 通过两个 IDC20 的插座 CN10 和 CN8 引出, GPIO0~GPIO15 从 CN10 引出, 其信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO0	1	2	GPIO1
GPIO2	3	4	GPIO3
GPIO4	5	6	GPIO5
GPIO6	7	8	GPIO7
GPIO8	9	10	GPIO9
GPIO10	11	12	GPIO11
GPIO12	13	14	GPIO13
GPIO14	15	16	GPIO15
VCC,+5V 电源输出	17	18	VCC,+5V 电源输出
GND, 公共地	19	20	GND,公共地


GPIO16~GPIO31 从 CN8 引出, 其信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO16	1	2	GPIO17
GPIO18	3	4	GPIO19
GPIO20	5	6	GPIO21
GPIO22	7	8	GPIO23
GPIO24	9	10	GPIO25
GPIO26	11	12	GPIO27
GPIO28	13	14	GPIO29
GPIO30	15	16	GPIO31
VCC,+5V 电源输出	17	18	VCC,+5V 电源输出
GND, 公共地	19	20	GND ,公共地

注意: 当使用 GPIO 的复用功能时,对应的 GPIO 不能再使用。

2.9 ISA 总线接口

为了支持大容量数据采集扩展应用, EM335x 配备了精简 ISA 扩展总线, 通过采用 DMA

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
RESET#,系统复位输出	1	2	ISA_DAV,ISA 总线地址有效信号
ISA_SD0,ISA 数据总线	3	4	ISA_SD4,ISA 数据总线
ISA_SD1,ISA 数据总线	5	6	ISA_SD5,ISA 数据总线
ISA_SD2,ISA 数据总线	7	8	ISA_SD6,ISA 数据总线
ISA_SD3,ISA 数据总线	9	10	ISA_SD7,ISA 数据总线
MSLn	11	12	ISA_WE#,ISA 总线写信号
IRQ4	13	14	ISA_RD#,ISA 总线读信号
IRQ3	15	16	ISA_CS#,ISA 总线片选信号
IRQ2	17	18	VCC,+5V 电源输出
IRQ1	19	20	GND,公共地

2.10 AD 输入端口

为兼容之前版本,评估底板 V2.0(及更高版本)支持 1 路 12bit 的慢速 AD 信号采集,它通过评估底板上的 J1 连接外面的模拟信号输入。J1 的信号定义如下:

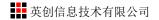
信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
3.3V	1	2	3.3V
	3	4	
AIN1 模拟输入(0-2.5V)	5	6	1.65V
GND	7	8	GND

短接 J1 的 5, 6 脚,可直接为 EM335x 提供 1.65V 的模拟电压输入,方便测试评估。注意:评估底板默认的配置没有焊接 J1,如果需要支持该项功能需要在定货时说明。

2.11 内置 WiFi 模块

评估底板上预留了焊接 RealTek 8188 系列 USB Wifi 模块的接口,预装 WEC2013 或 Linux 操作系统的 EM335x 可以支持该系列的 WiFi 模块,如果用户需评估底板支持该功能,需在订货时说明。

2.12 音频接口


CN12 是 EM335x 的音频接口,可直接连接英创的音频模块 ETA972,其信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
SPI_CLK	1	2	SPI_DOUT
SPI_CS0#	3	4	
I2S_TX0	5	6	I2S_LRCLK
I2S_SCLK	7	8	I2S_MCLK
	9	10	GND
RSTOUT#	11	12	GND
	13	14	
	15	16	VCC,+5V 电源输出

2.13 电容触摸屏接口

EM335x_CN3 可直接连接 TFT LCD 和 4 线电阻触摸屏,而评估底板上的 CN18 用于连接电容触摸屏,目前我们已经支持了 FT5316 电容触摸屏芯片,在 CN18 上提供了 I2C 以及复位与中断信号用于连接 FT5316。在使用底板上的 CN18 电容触摸屏接口时,需要将 EM335x 主板上的 CN3 与评估底板上的 EM335x_CN3 用软排线连接起来。CN18 的信号定义如下:

PIN#	信号名称	方向	信号简要描述
1	GND	Р	公共地
2	DCLK	0	串行像素时钟输出(Stream Pixel Clock)
3	HSYNC#	0	行同步脉冲,低有效
4	VSYNC#	0	场同步脉冲(或帧同步脉冲),低有效
5	GND	Р	公共地
6-11	R0 – R5	0	6-bit 红色分量输出信号,R0 为 LSB,R5 为 MSB。
12	GND	Р	公共地
13-18	G0 – G5	0	6-bit 绿色分量输出信号,G0 为 LSB,G5 为 MSB
19	GND	Р	公共地

20-25	B0 – B5	0	6-bit 蓝色分量输出信号,B0 为 LSB,B5 为 MSB	
26	GND	Р	公共地	
27	DE	0	显示使能控制信号	
28-29	+3.3V	Р	3.3V 电源输出,最大输出电流<200mA	
30	BLIGHT#	0	背光控制信号,低电平有效; LCD 显示时有效。	
31	LCD_PM#	0	LCD 电源控制,低电平有效	
32	NC		空引脚	
33-34	+5.0V	Р	5V 电源输出,最大输出电流<200mA	
35	NC		空引脚	
36	INT#	I	电容触摸屏中断信号,占用 EM335x GPIO17	
37	RST#	0	电容触摸屏复位信号,占用 EM335x GPIO18	
38	I2C_SCL	0	电容触摸接口芯片 I2C 信号,	
39	I2C_SDA	I/O	占用 EM335x GPIO27 电容触摸接口芯片 I2C 信号, 占用 EM335x GPIO26	
40	GND	Р	公共地	

当使能了 EM335x 的电容触摸屏驱动后,GPIO17、GPIO18、GPIO26、GPIO27 不能再做通用 IO 使用。

2.14 SPI 和 I2C 接口

CN15 是 EM335x 的硬件 SPI 接口和 I2C 总线接口,同时还包括两路中断输入信号, CN15 的信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
I2C_SDA,复用 GPIO26 复用 CAN2_TXD	1	2	I2C_SCL,复用 GPIO27 复用 CAN2_RXD
IRQ1 中断信号,复用 GPIO24	3	4	IRQ2 中断信号,复用 GPIO25
SPI_SCLK,复用 GPIO30	5	6	SPI_MOSI,复用 GPIO29
SPI_CS#,复用 GPIO31	7	8	SPI_MISO,复用 GPIO28
GND, 公共地	9	10	VCC,+5V 电源输出

2.15 电源插座

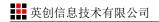
CN7 和 CN17 都可以作为开发评估底板以及 EM335x 模块供电的电源输入接口。为保证系统稳定运行,请至少使用 5V/3A 的直流电源为系统供电。

CN7 插座的定义如下:

PIN#	信号名称	信号简要描述
1	VCC	+5V 电源输入
2		
3	GND	公共地

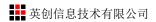
CN17 为 5.5mm 标准直流插座, 定义如下:

注意: EM335x 评估底板电源输入接口没有过压保护功能,接入超过接口限制的电压将导致硬件损坏, EM335x 电源电压限制请参考《EM335x 工控主板数据手册》。


<u>www.emtronix.com</u> 19 028-86180660

3、EM335x 与评估底板的连接插座

评估底板的 EM335x _CN1 和 EM335x _CN2 是两个 36 芯 IDC 双排插座(阴性),分别与 EM335x 的 CN1 和 CN2 插针相连接。


EM335x_CN1 各管脚的信号定义如下表:

冶旦 石 和 五 答 西 州 少	CN1		
信号名称及简要描述	PIN	PIN	信号名称及简要描述
LINK1#,网口 1 连接/传送指示	1	2	SPEED1#,网口 1 速度指示
TPTX1+,网口1(eth0)差分输出	3	4	TPTX1-,网口 1(eth0)差分输出
TPRX1+,网口 1 (eth0) 差分输入	5	6	TPRX1-,网口 1(eth0)差分输入
VDD_CMT1,网口1变压器公共端	7	8	VDD_CMT2,网络2变压器公共端
TPTX2+, 网口 2 (eth1) 差分输出	9	10	TPTX2-,网口 2(eth1)差分输出
TPRX2+, 网口 2 (eth1) 差分输入	11	12	TPRX2-,网口 2(eth1)差分输入
LINK2#,网口 2 连接/传送指示	13	14	SPEED2#,网口2速度指示
USB2_HD+,USB 主口差分信号	15	16	USB2_HD-,USB 主口差分信号
AIN1,模拟输入,0 – 2.5V 量程	17	18	保留
GPIO0 / CTS2# (COM2)	19	20	GPIO1 / RTS2# (COM2)
GPIO2 / COM6_RXD	21	22	GPIO3 / COM6_TXD
GPIO4 / COM7_RXD	23	24	GPIO5 / COM7_TXD
GPIO6 / PWM1	25	26	GPIO7 / PWM2
GPIO8 / PWM3	27	28	GPIO9 / PWM4
COM2_RXD,COM2 数据输入	29	30	COM2_TXD, COM2 数据输出
COM3_RX,输入,RS232 电平	31	32	COM3_TX,输出,RS232 电平
COM4_RXD	33	34	COM4_TXD
COM5_RXD	35	36	COM5_TXD / 调试模式 DBGSL#

EM335x_CN2 各管脚的信号定义如下表:

冷日 5 4 4 5 5 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1	CN2		片日石板开 旋曲排冲	
信号名称及简要描述	PIN	PIN	信号名称及简要描述	
+5V 电源输入	1	2	+5V 电源输入	
USB_OTG_VBUS	3	4	RSTIN_OUT#,外部复位输入	
电源地(GND)	5	6	电源地(GND)	
USB_OTG_D+	7	8	USB_OTG_D-	
USB_OTG_ID	9	10	BATT3V,3.3V 电池输入	
DBG_COM_RX,RS232 电平	11	12	DBG_COM_TX,RS232 电平	
USB1_HD+,USB 主口差分信号	13	14	USB1_HD-,USB 主口差分信号	
GPIO10 / CAN1_RXD	15	16	GPIO11 / CAN1_TXD	
GPIO12 / ISA_ADV#	17	18	GPIO13 / ISA_CS#	
GPIO14 / ISA_RD#	19	20	GPIO15 / ISA_WE#	
GPIO16 / ISA_D0	21	22	GPIO17 / ISA_D1	
GPIO18 / ISA_D2	23	24	GPIO19 / ISA_D3	
GPIO20 / ISA_D4	25	26	GPIO21 / ISA_D5	
GPIO22 / ISA_D6	27	28	GPIO23 / ISA_D7	
GPIO24 / IRQ1	29	30	GPIO25 / IRQ2	
GPIO26 / I2C_SDA/CAN2_TXD	31	32	GPIO27 / I2C_SCL/CAN2_RXD	
GPIO28 / SPI_MISO	33	34	GPIO29 / SPI_MOSI	
GPIO30 / SPI_SCLK	35	36	GPIO31 / SPI_CS0N	

EM335x_CN3 各管脚的信号定义如下表:

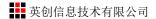
PIN#	信号名称	方向	信号简要描述
1	GND	Р	公共地
2	DCLK	0	串行像素时钟输出(Stream Pixel Clock)
3	HSYNC#	0	行同步脉冲, 低有效
4	VSYNC#	0	场同步脉冲(或帧同步脉冲),低有效
5	GND	Р	公共地
6-11	R0 – R5	0	6-bit 红色分量输出信号,R0 为 LSB,R5 为 MSB。
12	GND	Р	公共地
13-18	G0 – G5	0	6-bit 绿色分量输出信号,G0 为 LSB,G5 为 MSB
19	GND	Р	公共地
20-25	B0 – B5	0	6-bit 蓝色分量输出信号,B0 为 LSB,B5 为 MSB
26	GND	Р	公共地
27	DE	0	显示使能控制信号
28-29	+3.3V	Р	3.3V 电源输出,最大输出电流<200mA
30	BLIGHT#	0	背光控制信号,低电平有效;LCD 显示时有效。
31	LCD_PM#	0	LCD 电源控制,低电平有效
32	NC		空引脚
33-34	+5.0V	Р	5V 电源输出,最大输出电流<200mA
35	NC		空引脚
36	Xm	I	触摸屏 X 方向差分输入-
37	Хр	ı	触摸屏 X 方向差分输入+
38	Ym	ı	触摸屏 Y 方向差分输入-
39	Yp	I	触摸屏 Y 方向差分输入+
40	GND	Р	公共地

4、评估底板内部插座及其它

4.1 运行模式选择跳线器

EM335x 具有运行和调试两种工作模式,两种模式的选择是通过 EM335x 上引出的 TXD5 引脚来判断的,在系统上电时,TXD5 为输入状态,如果此时通过 5.1K 下拉电阻将 TXD5 位低,系统进入调试模式,如果 TXD5 悬空,系统进入运行模式。在 EM335x 评估底板上放置了运行模式选择路线器 JP1, 短接 JP1, 即将 TXD5 拉低, 系统启动进入调试模式,断开 JP1, 系统启动后进入运行模式。

系统调试与运行模式的定义与作用请参考《EM335x 使用必读》。


4.2 指示灯

EM335x 评估底板上用于指示作用的 LED 灯共有 7 个,介绍如下:

指示灯编号	指示灯名称	功能简要描述
D1	PWR	电源指示灯(当系统由 5V 或 USB 供电时点亮)
D2	RUN	运行指示灯(系统调试串口有信息输出时亮)
D10	RXD4	RS485 接口接收到数据时亮
D11	TXD4	RS485 接口发送数据时亮
D12	RXD7	RS485 接口接收到数据时亮
D13	TXD7	RS485 接口发送数据时亮
D18	CAN	CAN 总线数据收发指示(仅 EM335x)

4.3 复位按键

EM335x 评估底板上的 S1 是系统复位按键,按下 S1 会将 EM335x 的复位输入接地,系统复位。

4.3 RTC 后备电池

EM335x 评估底板上放置了一颗 3V 锂电池 CR2032 作为 EM335x RTC 单元的后备电池。当 EM335x 没有 5V 供电时,将由这颗电池为 EM335x 实时时钟单元供电。CR2032 的容量为 240mA/h,EM335x RTC 工作电池小于 17uA,所以理论上 CR2032 可以供 EM335x RTC 工作 400 天左右。如果 EM335x 长时间不使用,可以将评估底板上的电池取出,以免电池耗尽,当 EM335x 通上电源正常使用时,几乎不消耗后备电池电量。如果用户需要更长的 RTC 掉电保持时间,可以选用更大容量的后备时钟电池或扩展专用的 RTC 时钟芯片,选择电池时可参考《英创工控主板实时时钟及后备电池选择》。

5、其它说明

- 1. 在 EM335x 评估底板的四个角上,有 4 个 Φ4.2 位孔,可用之将底板固定在特定位置或安装支撑柱。
- 2. 开发光盘中提供有评估底板的电路原理图(PDF格式)和 PCB图(Protel 文件),用户可作为进一步开发的参考,进行增加或删减以满足自己产品的实际需要。我公司提供的图纸已经证实成功实现上述各功能,但不能保证用户根据此图纸作的进一步更改能够 100%成功,用户若有疑问,请与我公司工程师联系。

手册版本	适用底板	简要描述	日期
V1.0	EM335xEVB V1.1	创建 EM335x 开发评估底板手册	2014-1
V1.1	EM335xEVB V1.1 EM335xEVB V1.2	增加对 EM3352 主板的说明	2014-4
V1.2	EM335xEVB V1.3	修改 ISA 总线相关说明,ISA 总线可支持多串口模块扩展增加电源适配器插座说明	2014-6
V1.3	EM335xEVB V1.3	增加对 EM3352-L 主板的相关说明	2014-7
V1.4	EM335xEVB V1.4	增加电容触摸屏 LCD 接口说明	2014-10
V1.5	EM335xEVB V1.4 EM335xEVB V1.5	EM335x/EM3352 支持双 CAN, 增加 CAN2 接口说明	2015-5
V2.0	EM335xEVB V2.0	增加內置 WiFi 模块相关说明 修改后备电池相关说明 修改 AD 输入端说明	2015-9
V2.1	EM335xEVB V2.0	修改 ISA 总线接口说明	2016-03